Агентное и дискретно-событийное моделирование
Автор: empat
Пришло время закончить серию постов о парадигмах имитационного моделирования. Сегодня я расскажу о дискретно-событийном моделировании и агентных системах.
Термин “дискретно-событийно моделирование” исторически закрепился за моделированием систем обслуживания потоков объектов некоторой природы: клиентов банка, автомобилей на заправочной станции, телефонных вызовов, пациентов в поликлиниках и т.п. Именно такие системы называются системами массового обслуживания.
Вышеперечисленные простые системы не исчерпывают всего многообразия систем массового обслуживания. К примеру, конвейерные системы для поточного производства и сборки изделий также могут рассматриваться как системы массового обслуживания, но они требуют при анализе учет характеристик самих конвейеров (к примеру, их формы, скорости) и алгоритмов сборки. Кроме того, большой класс систем включает такие процессы обслуживания, которые требуют для отдельных операций выполнения специфических условий, например, наличие ресурсов конкретного типа.
В основе данного вида моделирования лежит концепция заявок (транзактов, entities), ресурсов и потоковых диаграмм (flowcharts), определяющих потоки заявок и использование ресурсов. Этот подход восходит к Джеффри Гордону, который в 1960х придумал и развил GPSS и реализовал её, работая в IBM. Заявки (транзакты в GPSS) – это пассивные объекты, представляющие людей, детали, документы, задачи, сообщения и т.п. Они путешествуют через flowchart, стоя в очередях, обрабатываясь, захватывая и освобождая ресурсы, разделяясь, соединяясь и т.д. Типичная потоковая диаграмма показана на рис. 1 в терминах продукта Arena. Вообще, существует около сотни коммерческих инструментов, так или иначе поддерживающих подобный стиль моделирования; некоторые общего назначения, большинство нацелено на определённые ниши: обслуживание, бизнес-процессы, производство, логистика и т.д. Их пользовательские интерфейсы могут существенно различаться из-за специализации, но за ними непременно стоит более или менее одинаковый дискретно-событийный “движок” (engine), который “гоняет” заявки через блоки.
Дискретно-событийное моделирование имеет огромную сферу приложений – от логистики и систем массового обслуживания до транспортных и производственных систем. Некоторые авторы считают, что данная парадигма моделирования, на самом деле является единственным представителем имитационного моделирования как такового. При этом большое число монографий с названием “Имитационное моделирование” посвящены изложению исключительно этого стиля моделирования.
Рис. 1
В настоящее время делается большое количество исследований и разработок в различных областях под лозунгом многоагентные системы, например, в искусственном интеллекте, теории сложных систем, теории игр и т.д. Общепризнанного определения “что такое агент” не существует; люди до сих пор спорят о том, какими же качествами должен обладать объект, чтобы “заслужить” называться агентом: инициативность и реактивность, ориентация в пространстве, способность обучаться, общаться, “интеллект” и т.д. Таким обзором, существует множество определений понятия агента. Общим во всех этих определениях является то, что агент – это некоторая сущность, которая обладает активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, может взаимодействовать с окружением и другими агентами, а также может изменяться (эволюционировать). Многоагентные модели используются для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами, а наоборот, эти глобальные правила и законы являются результатом индивидуальной активности членов группы. Цель агентных моделей – получить представление об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении ее отдельных активных объектов и взаимодействии этих объектов в системе. Таким образом, агентное моделирование называют также моделированием снизу вверх. Пример агентной системы изображен на рис. 2.
Рис.2С помощью агентов можно моделировать рынки (агент представляет потенциального покупателя со своими предпочтениями), конкуренцию компаний на рынке (агент – это компания со своим капиталом, стратегией и бизнес-процессами), динамика населения и многое другое.
Оформить и получить займ на карту мгновенно круглосуточно в Москве на любые нужды в день обращения. Взять мгновенный кредит онлайн на карту в банке без отказа через интернет круглосуточно.
1 отзыв
Ссылки на эту статью
-
Empatika » Blog Archive » Пробки - Агентное Моделирование — November 5, 2008 @ 12:13 am