Агентное и дискретно-событийное моделирование


Автор:

Пришло время закончить серию постов о парадигмах имитационного моделирования. Сегодня я расскажу о дискретно-событийном моделировании и агентных системах.

Термин “дискретно-событийно моделирование” исторически закрепился за моделированием систем обслуживания потоков объектов некоторой природы: клиентов банка, автомобилей на заправочной станции, телефонных вызовов, пациентов в поликлиниках и т.п. Именно такие системы называются системами массового обслуживания.

Вышеперечисленные простые системы не исчерпывают всего многообразия систем массового обслуживания. К примеру, конвейерные системы для поточного производства и сборки изделий также могут рассматриваться как системы массового обслуживания, но они требуют при анализе учет характеристик самих конвейеров (к примеру, их формы, скорости) и алгоритмов сборки. Кроме того, большой класс систем включает такие процессы обслуживания, которые требуют для отдельных операций выполнения специфических условий, например, наличие ресурсов конкретного типа.

В основе данного вида моделирования лежит концепция заявок (транзактов, entities), ресурсов и потоковых диаграмм (flowcharts), определяющих потоки заявок и использование ресурсов. Этот подход восходит к Джеффри Гордону, который в 1960х придумал и развил GPSS и реализовал её, работая в IBM. Заявки (транзакты в GPSS) – это пассивные объекты, представляющие людей, детали, документы, задачи, сообщения и т.п. Они путешествуют через flowchart, стоя в очередях, обрабатываясь, захватывая и освобождая ресурсы, разделяясь, соединяясь и т.д. Типичная потоковая диаграмма показана на рис. 1 в терминах продукта Arena. Вообще, существует около сотни коммерческих инструментов, так или иначе поддерживающих подобный стиль моделирования; некоторые общего назначения, большинство нацелено на определённые ниши: обслуживание, бизнес-процессы, производство, логистика и т.д. Их пользовательские интерфейсы могут существенно различаться из-за специализации, но за ними непременно стоит более или менее одинаковый дискретно-событийный “движок” (engine), который “гоняет” заявки через блоки.

Дискретно-событийное моделирование имеет огромную сферу приложений – от логистики и систем массового обслуживания до транспортных и производственных систем. Некоторые авторы считают, что данная парадигма моделирования, на самом деле является единственным представителем имитационного моделирования как такового. При этом большое число монографий с названием “Имитационное моделирование” посвящены изложению исключительно этого стиля моделирования.dc.JPG

Рис. 1

В настоящее время делается большое количество исследований и разработок в различных областях под лозунгом многоагентные системы, например, в искусственном интеллекте, теории сложных систем, теории игр и т.д. Общепризнанного определения “что такое агент” не существует; люди до сих пор спорят о том, какими же качествами должен обладать объект, чтобы “заслужить” называться агентом: инициативность и реактивность, ориентация в пространстве, способность обучаться, общаться, “интеллект” и т.д. Таким обзором, существует множество определений понятия агента. Общим во всех этих определениях является то, что агент – это некоторая сущность, которая обладает активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, может взаимодействовать с окружением и другими агентами, а также может изменяться (эволюционировать). Многоагентные модели используются для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами, а наоборот, эти глобальные правила и законы являются результатом индивидуальной активности членов группы. Цель агентных моделей – получить представление об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении ее отдельных активных объектов и взаимодействии этих объектов в системе. Таким образом, агентное моделирование называют также моделированием снизу вверх. Пример агентной системы изображен на рис. 2.

am.JPG

Рис.2

С помощью агентов можно моделировать рынки (агент представляет потенциального покупателя со своими предпочтениями), конкуренцию компаний на рынке (агент – это компания со своим капиталом, стратегией и бизнес-процессами), динамика населения и многое другое.


1 отзыв

Ссылки на эту статью

  1. Empatika » Blog Archive » Пробки - Агентное Моделирование — November 5, 2008 @ 12:13 am

Оставить отзыв

WordPress Themes